Efficient Sum of Absolute Difference Computation on FPGAs

International Conference on Field Programmable Logic and Application (FPL) 2016

Martin Kumm, Marco Kleinlein and Peter Zipf
University of Kassel, Germany
Sum of Absolute Difference (SAD)

- SAD is an important operation in image and video processing
- Metric to measure the distance between two blocks of an image
- Applications are, e.g., motion estimation or stereo matching
- An $R \times C$ SAD operation of two matrices A and B is defined as:

$$SAD(A, B) = \sum_{i=1}^{R} \sum_{j=1}^{C} |a_{i,j} - b_{i,j}|$$
Previous Work

Sequential AD [1]

Parallel AD [2]

FPGA optimized [3]

- SAD is computed with N absolute difference (AD) units
- N-input adder tree/compressor tree required
- LUTs of best reported circuit grow with $2.5NB$ (B: word size)
Proposed SAD

- SAD is computed with $N/2$ 1x2 SAD units
- $N/2$-input adder tree / compressor tree required
- LUTs of proposed SAD grow with $2.0NB$ (B: word size)
Results

(a) Required and estimated LUTs

(b) Relative LUT reduction compared to [3]
Check out *uni_ks* git branch of https://scm.gforge.inria.fr/anonscm/git/flopoco/flopoco.git

See you at the poster at 3:30!

Literature: