Vector FPGA Acceleration of 1-D DWT Computations using Sparse Matrix Skeletons

Sidharth Maheshwari, Gourav Modi, Siddhartha, Nachiket Kapre
School of Computer Science and Engineering
Nanyang Technological University
Matrix-Form 1-D DWT

• Formulation:

\[C = TM \cdot X, \text{ where } TM = \prod_k T_{ak}^p \]
Matrix-Form 1-D DWT

• Formulation:
 \[C = TM \cdot X, \text{ where } TM = \prod_k T_k^p \]

• TM matrix is highly sparse
 ➢ Large number of multiply-by-zero operations
 ➢ Large memory footprint consisting of zeroes
Matrix-Form 1-D DWT

• Formulation:
 \[C = TM \cdot X, \text{ where } TM = \prod_k T_{ak}^p \]

• TM matrix is highly sparse
 - Large number of multiply-by-zero operations
 - Large memory footprint consisting of zeroes

• Goals:
 - SIMD-friendly operations on non-zero values only
 - Customized DMA routines for efficient bandwidth utilization
Sparse Matrix Skeleton

- Remove multiply-by-zero operations
- Reduction in memory footprint of TM.
Modified Matrix-Form 1-D DWT

$N = 65536$

Rearranged data

Scalar vector product

skeleton (8×36)
VectorBlox MXP

- Lanes: 16-32
- Scratchpad: 64-128 KB
- DMA bandwidth: 4-32 B/cycle
$N = 2^{16}, L = 6\text{ and } k = 3$
\[N = 2^{16}, L = 6 \text{ and } k = 3 \]
Results - Speedup

\[N = 2^{16}, L = 6 \text{ and } k = 3 \]
Summary

• We propose a **Modified Matrix-Form** scheme to unlock inherent parallelism in 1-D DWT

• We exploit the sparsity pattern in TM to reduce complexity from $O(n^2)$ to $O(n)$ using:
 - Skeletons to avoid wasteful multiply-by-zero operations
 - Rearrangement of input samples

• Speedups of **12-103x** over state-of-the-art in-built *signal* library in Octave (*dwt* function)
Experimental Setup

Matrix-form 1-D DWT

Sparse Matrix Skeletons

CPU
- Optimized OpenBLAS routines in Octave and C (compiled with –O3)
- Performance measured using PAPI v5.4.3
- 32b ARMv7 on Beaglebone Black, Zedboard, and ARMv6 on Raspberry Pi

CPU + MXP
- Customized DMA routines for data transfer between host and MXP
- 16-32 vector lanes
- 64-128KB scratchpad memory
- Performance measured using MXP Timing API
- Altera DE2/DE4 and Zedboard
Throughput

\[N = 2^{16}, L = 6 \text{ and } k = 3 \]
CHALLENGES:

- Large volume of data
- Strict real-time processing constraints
- High accuracy demands
- Energy constraints, especially in embedded systems
Modified Matrix-Form 1-D DWT

Rearrangement

N = 65564

8
36
36
8

8192