Hardware Acceleration of a Software-based VPN

Furkan Turan
Ruan de Clercq, Pieter Maene, Oscar Reparaz
Ingrid Verbauwheide

KU Leuven - COSIC
VPN Introduction

VPN (Virtual Private Network) encrypts the communication between two parties.
VPN Device Introduction

Goal: Start with a VPN application,
Convert it into a 2 port VPN device,
Accelerate it with a cryptographic coprocessor.
Software-based VPN

How a software-based VPN application works:

SigmaVPN: Light-weight, secure and modular software-based VPN
The new Private Comm. module uses a Physical Network Interface. It is capable of even capturing broadcast messages.
NaCl’s CryptoBox

Alice

\[K_S \leftarrow \text{ECDH}(K_{\text{SEC,A}}, K_{\text{PUB,B}}) \]

\[K_D \leftarrow \text{HSalsa20}(K_S, N_1) \]
\[S \leftarrow \text{Salsa20}(K_D, N_2 \| \text{CTR}) \]
\[\text{CT} \leftarrow S \oplus \text{MSG} \]
\[\text{MAC}_A \leftarrow \text{Poly1305(CT, S)} \]

Bob

\[K_S \leftarrow \text{ECDH}(K_{\text{SEC,B}}, K_{\text{PUB,A}}) \]

\[K_D \leftarrow \text{HSalsa20}(K_S, N_1) \]
\[S \leftarrow \text{Salsa20}(K_D, N_2 \| \text{CTR}) \]
\[\text{MAC}_B \leftarrow \text{Poly1305(CT, S)} \]
\[\text{Compare}(\text{MAC}_A, \text{MAC}_B) \]
\[\text{MSG} \leftarrow S \oplus \text{CT} \]
One-time Authenticator: Poly1305

An update operation for each 128-bit blocks of the message
The operation implements a modular multiplication in radix \((2^{130} - 5)\).
Poly1305’s Implementation

Implemented using a school-book multiplication:
• Big multiplication is divided into smaller blocks
• Followed by propagation of the results

Each small block multiplication is handled in single-cycle multipliers of Zynq’s DSP48 Slices

To boost the performance:
• Parallel execution of smaller-block multiplications
• Parallel propagating the results
Poly1305’s Implementation

A datapath for each column to handle smaller block multiplications.

Result of a column is propagated to the next.

The multipliers set the critical path.
Hardware Implementation

- Processing System runs Linux - SigmaVPN.
- DMA transfers data between co-processor and RAM.
Coproessor's Datapath
Scheduling

- Operation is divided into *time slots*
- A time slot is the time to process a 512-bit message block
- Each hardware module is active in each time slot
Hardware Utilization

Single Instance of Processing Blocks

• Resource Utilization: 53.67%
• Max Clock Freq: 92.85 MHz
• Process 512-bit block in a time slot

Duplicated Processing Blocks

• Resource Utilization: 97.25%
• Max Clock Freq: 81.25 MHz
• Process 1024-bit block in a time slot

ZYBO Board comes with Zynq Z-7010 SoC;
• The smallest Zynq device
• Has limited resources
Communication btw. HW & SW

Configuring DMA for transferring buffers requires:
• Accessing physical addresses
• Coherent memory accesses

Created a Linux kernel space module (Device File)

Problem: Overhead of making context switches
• Going do kernel space costs ~800 cycles.
• Transferring the frame btw. User and Kernel space costs ~740 cycles.
Improvements to Cryptographic Operations

- Encrypted and decrypted many test vectors with both SW-only and SW+HW implementations.
- Compared results for accuracy and execution times.
Improvements to VPN Bandwidth

Test Network Structure:

Bandwidth tests using Iperf Network Bandwidth Measurement Tool
Improvements to VPN Bandwidth

TCP bandwidth increase
- 2.9 times for 128-byte frames,
- 4.36 times for 1024-byte frames.

UDP bandwidth increase
- 2 times for 128-byte frames,
- 5.36 times for 1024-byte frames.

[Bar chart showing bandwidth for different types of communication with varying levels of crypto.]
Functionality Test

• The designed VPN device is still capable of establishing a secure communication with original SigmaVPN application.

 o A VPN device on a low-cost dev-board, providing confidential communication between a whole home/business network and a remote server.
Conclusion

• A cryptographic hardware accelerator is offered for NaCl's CryptoBox specifically for SigmaVPN.

• Encrypting a 1024-byte message in 94% less time compared to SW-only implementation.

• Integrating our HW-SW codesign into SigmaVPN offers up to 6 times more communication bandwidth.

• Xilinx Open HW Design Contest Finalist: http://www.openhw.eu/2016-finalists.html

• It’s available open source: https://github.com/furkanturan/Hardware-Accelerated-SigmaVPN